

Protocol: IV-HSL Emitter Module

Printable Version

Overview

This protocol reconstitutes the Bjal/BjaR quorum sensing components from *Bradyrhizobium japonicum* to establish IV-HSL-producing synthetic cells (emitters) and IV-HSL-responsive *Escherichia coli* cells (receivers), implementing the . IV-HSL Emitter Cell.

Bjal is expressed inside Emitter Cells containing PURExpress to produce the enzyme Bjal from the template pt7-bjal. Bjal will catalyze a reaction between the membrane impermeable IV-CoA and SAM substrates to yield membrane *permeable* IV-HSL.

E. coli cells expressing BjaR act as receiver cells, providing an easy means to detect IV-HSL production. When BjaR binds IV-HSL, expression of a fluorescent reporter gene controlled by a BjaR-regulated promoter is triggered.

Successfully built IV-HSL Emitter Cells will release IV-HSL and induce GFP expression in XL10-Gold cell with increasing green fluorescence over time.

There are five key stages to making the IV-HSL Emitter Cell:

Step	Process	Hands-on Time	Total Time	Notes
1	<u>Pre-culture BjaR receiver</u> <u>cells</u>	30 mins	3.5 hr	
2	Prepare lipids-in-oil solution, outer solution, and substrate stock solutions	1 hr	4 h	Buffers and lipids may be prepared in advance and used for experiments on subsequent days.
3	Assemble PURE reactions	30 mins	30 mins	
4	Encapsulate liposomes	30 mins	30 mins	
5	Measure and image	30 mins	6–12 h	Total time depends on the exact experiment and incubation conditions. GFP expression should be seen over the first 6 hours at 37C.

Protocol: IV-HSL Emitter Module

Materials and Equipment

Name	Product	Manufacturer	Part #	Price	Link
Buffers					
Glucose	D-(+)-Glucose, 99%	Thermo Scientific	A16828-36	\$ 41.65	[link]
Sucrose	Sucrose, 99%	Thermo Scientific	A15583-36	\$41.65	[link]
Lipids					
Egg PC	25mg/mL	Avanti Lipids	840051C- 200mg	\$186	[link]
Liss-Rhod-PE	18:0 Liss Rhod PE 1 mg/mL	Avanti Lipids	810179P-1mg	\$273.47	[link]
Mineral Oil	Mineral oil, mixed weight	Thermo Scientific	AC415080010	\$53.40	[link]
Glass Syringe 250 uL		Hamilton	14-815-238	\$150.15	[link]
PURE					
PURE	PURExpress	NEB	E6800S	\$295.00	[<u>link</u>]
RNase Inhibitor	RNase Inhibitor, Murine	NEB	M0314S	\$81.00	[link]
DNA	pT7-bjaI	b. next			[<u>link</u>]
	bjaR-GFP-native	b.next			[<u>link</u>]
OptiPrep	OptiPrep - Density Gradient Media (lodixanol)	COSMO BIO USA	AXS-1114542	\$172	[link]
SAM	S- adenosylmethionine (SAM)	NEB	B9003S	\$45	[link]
IV-CoA	Isovaleryl coenzyme A lithium salt hydrate	Millipore Sigma	19381-10MG	\$348	[link]
IV-HSL	3-Methyl-N-[(3S)- tetrahydro-2-oxo- 3- furanyl]butanamide	LGC	TRC- M282980- 50MG	\$171	[link]

Protocol: IV-HSL Emitter Module

Name	Product	Manufacturer	Part #	Price	Link
DMSO	Dimethyl sulfoxide	Thermo Scientific	042780.M1	\$342	[link]
Cell culture					
XL10-Gold Cells	XL10-Gold Ultracompetent Cells	Agilent	200314	\$223	[link]
M9 Media	M9, Minimal Salts, 5X, powder, minimal microbial growth medium	Sigma-Aldrich	M6030-1KG	\$260	[<u>link</u>]

Step 1: Pre-culture BjaR receiver cells

	Pr	repare glycerol stock of BjaR receiver cells
		Transform XL-10 Gold competent <i>E. coli</i> with bjar-GFP-native:
		\square Add 1–5 μl containing 1 pg–100 ng of plasmid DNA bjar-GFP-native to 50 μl of XL10-Gold cell mixture. Carefully flick the tube 4–5 times to mix cells and DNA. Do not vortex.
		☐ Place the mixture on ice for 15 minutes. Do not mix.
		☐ Heat shock at exactly 42°C for 40 seconds. Do not mix.
		☐ Place on ice for 5 minutes. Do not mix.
		$\hfill \square$ Pipette 950 μl of room temperature SOC into the cell mixture.
		☐ Shake the cell mixture vigorously (250 rpm) at 37°C for 60 minutes.
		☐ Warm Ampicilin LB agarose plates at 37°C for 10 mins.
		$\ \ \ \ \ \ \ \ \ \ \ \ \ $
		$\hfill \square$ Spread 50–100 μl of each dilution onto a Ampicilin agarose plate and incubate overnight for ~15 hrs at 37°C.
	□ pr] [if we're including making a glycerol stock, need overnight culture and glycerol stock reparation here]
	Pr	repare a streak plate from the glycerol stock (<u>reference</u>)
		Streak a Ampicillin LB plate from the glycerol stock and incubate overnight at 37C.
_		repare M9 Media containing 1× M9 salts, 0.34 mg/ml-1 thiamine hydrochloride, 0.2%

Protocol: IV-HSL Emitter Module 3

Dick a colony from the <i>E. coli</i> streak plate, and inoculate a 5 mL culture tube containing the M9 media with 100 ug/mL carbenicillin.
\square Incubate the cells at 37 °C, 225 rpm, for 3 h. <i>Prepare Emitter liposomes while the cells incubate.</i>
\square Dilute the culture media with the pre-warmed M9 media until OD600 = ~0.1.
☐ Balance osmolarity of the culture media with PURE (inner solution in liposomes) by adding glucose to the M9 media:
Volume to mix (uL)

	Volume to mix (uL)
M9 media	1000
3M Glucose	293.81

Step 2: Prepare lipids-in-oil solution, outer solution, and substrate stock solutions

Prepare lipids-in-oil (mineral oil) solution

	Clean glass syringes.
	☐ Pour a small amount of 95% ethanol into a glass container (e.g. a 10 mL beaker).
	Assemble the glass syringe and prime it by drawing ethanol into the glass syringe, there empty into a waste bottle.
_	Use glass syringes to add lipids, as shown in the table below, into the 10 ml glass vial bottaining 1 ml of mineral oil (final lipid concentration is 5 mg/ml).

Lipids	Stock Concentration (mg/mL)	Volume to add (uL)	Target percentage
Egg PC	25	160	66.68
Cholesterol	50	20	33.32
18:0 Liss Rhod PE	1	5	0.01

Heat the lipids-in-oil mixture on a hotplate a	at JJ	e at JJ C	101 2 1113
--	-------	-----------	------------

Prepare outer solution

Final concentration of sugar stock solution is 900 mM

Buffer	Volume to add (uL)
3M Glucose Stock	700
H2O	300

Prepare substrate stock solutions

[☐] Vortex the lipids-in-oil mixture for 1 min.

[•] The lipids-in-oil mixture can be stored at 4 C for up to 3 days.

Substrate	Concentration (uM)	MW (g/mol)	Weight (g)	Final Volume (mL)
SAM	5000	398.44	1.99	1
IV-CoA	5000	851.65	4.26	1
IV-HSL	10	183.21	1.83	1

Step 3: Assemble PURE Reactions

PURE reaction setup

	Sample	Negative control	Positive control	
Component	Volume (uL)	Volume (uL)	Volume (uL)	Notes
PURE Solution A	12	12	0	PURE energy solution: small molecules
PURE Solution B	9	9	0	PURE proteins and ribosomes
RNAse Inhibitor	1.5	1.5	0	Prevents RNAse activity
볼 <u>EM01-pOpen-pT7-</u> Bjal (~200 ng/uL)	1.5	0	0	DNA encoding green fluorescent protein
SAM (5mM)	1.8	1.8	0	Substrate for IV-HSL production.
IV-CoA (5mM)	0.48	0.48	0	Substrate for IV-HSL production.
OptiPrep	1.5	1.5	1.5	Adds density for phase- transfer
IV-HSL (10 uM)	0	0	0.3	Commercial IV-HSL for positive control.
3M Glucose	0	0	8.46	
ddH2O	2.22	3.72	19.74	
Total	30	30	30	

Step 4: Encapsulate PURE reactions into Liposomes

Some tips and tricks can be found in 🧶 <u>"Hello, world" PURE Liposomes</u> .
☐ Set up a microfuge tube rack, with three 1.5 mL microfuge tubes per liposome encapsulation:
☐ Number the tubes per the number of reactions assembled in Step 3.
☐ For each reaction, label the two tubes:
☐ I — Oil emulsion
□ O — Outer solution
Add 30 ul of PURE reactions prepared in Step 3 to tubes labelled I .
Add 180 uL of the lipids-in-oil mixture on top of the PURE reactions in tubes labelled I and pipette vigorously until the emulsion becomes cloudy.
Add 300 uL of outer solution to each of the tubes labelled O .
Add 210 uL of the milky solution carefully on top of the outer solution in the tubes labelled O.
☐ Centrifuge at 9000 rpm at 4c for 10 mins.
Remove the top oil and resuspend the pellet in 100 ul of outer solution.
☐ Collect the liposomes.
Step 5: Measure and Image Liposomes and Cells
Imaging using confocal microscopy (Operetta CLS):
While microscopy setups may vary, our performance data was collected using the following configuration.
☐ Add BjaR receiver cells prepared in Step 1 into 384 Well Glass Bottom Microplates.
☐ Add 10 uL of liposomes made in Step 3 on top of the receiver cells in 384 Well Glass Bottom Microplates.
☐ Imaging conditions using Operetta:
Temperature: 37 C degree
 Green fluorescence channel (200 us expsoure 95%) - excitation: 460-490 nm; emission: 500-550 nm.
 Red fluorescence channel (50 us exposure 95%) - excitation: 530-560 nm; emission: 570-650 nm.
Brightfield (20 us 95%)

Protocol: IV-HSL Emitter Module

• We also acquired z-stack images spanning from 0 μm to 80 μm of the focal plane.

• We capture a 6 h time lapse with 10 min intervals.

Measuring usinng plate reader (BioTek Cytation 5):
☐ Add BjaR receiver cells prepared in Step 1 into 96 Well Glass Bottom Microplates.
Add 10 uL of liposomes made in Step 3 on top of the receiver cells in 96 Well Glass Bottom Microplates.
☐ Procedures:
Temperature: 37 C degree
Read the fluorescence intensity from the bottom
 Excitation wavelength: 485 nm; Emission wavelength: 528 nm
We capture a 6 h time lapse with 5 min intervals
Background Protocols
☐ Prepare lipids for use in encapsulation: = <u>Lipid Preparation</u>
☐ Prepare inner and outer buffers: ◆ PURE inner and outer solution
Resources and References
Other Protocols
 Transformation protocol:
• Papers
 Smith, J. M., Hartmann, D. & Booth, M. J. Engineering cellular communication between light-activated synthetic cells and bacteria. <i>Nature Chemical Biology</i> 19, 1138–1146 (2023). [https://www.nature.com/articles/s41589-023-01374-7]

Protocol: IV-HSL Emitter Module 7

• b.next